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Walking the Interactome
for Prioritization of Candidate Disease Genes

Sebastian Köhler,1,2 Sebastian Bauer,1,2 Denise Horn,1 and Peter N. Robinson1,*

The identification of genes associated with hereditary disorders has contributed to improving medical care and to a better understanding

of gene functions, interactions, and pathways. However, there are well over 1500 Mendelian disorders whose molecular basis remains

unknown. At present, methods such as linkage analysis can identify the chromosomal region in which unknown disease genes are lo-

cated, but the regions could contain up to hundreds of candidate genes. In this work, we present a method for prioritization of candidate

genes by use of a global network distance measure, random walk analysis, for definition of similarities in protein-protein interaction

networks. We tested our method on 110 disease-gene families with a total of 783 genes and achieved an area under the ROC curve of

up to 98% on simulated linkage intervals of 100 genes surrounding the disease gene, significantly outperforming previous methods

based on local distance measures. Our results not only provide an improved tool for positional-cloning projects but also add weight

to the assumption that phenotypically similar diseases are associated with disturbances of subnetworks within the larger protein inter-

actome that extend beyond the disease proteins themselves.
Introduction

At the time of this writing, over 1500 Mendelian condi-

tions whose molecular cause is unknown are listed in the

Online Mendelian Inheritance in Man (OMIM) database.1

Additionally, almost all medical conditions are in some

way influenced by human genetic variation. The identifica-

tion of genes associated with these conditions is a goal of

numerous research groups, in order to both improve med-

ical care and better understand gene functions, interac-

tions, and pathways.2 Most current efforts at disease-gene

identification involving linkage analysis or association

studies result in a genomic interval of 0.5–10 cM contain-

ing up to 300 genes.3,4 Sequencing large numbers of candi-

date genes remains a time-consuming and expensive task,

and it is often not possible to identify the correct disease

gene by inspection of the list of genes within the interval.

A number of computational approaches toward candi-

date-gene prioritization have been developed that are based

on functional annotation, gene-expression data, or se-

quence-based features.5–14 Recent high-throughput tech-

nologies have produced vast amounts of protein-protein

interaction data,15 which represent a valuable resource

for candidate-gene prioritization, because genes related

to a specific or similar disease phenotype tend to be located

in a specific neighborhood in the protein-protein interac-

tion network.16 However, to date, relatively simple methods

for exploring biological networks have been applied to

the problem of candidate-gene prioritization, including

the search for direct neighbors of other disease genes17

and the calculation of the shortest path between candidates

and known disease proteins.11,18

In this work, we have investigated the hypothesis that

global network-similarity measures are better suited to
The
capture relationships between disease proteins than are

algorithms based on direct interactions or shortest paths

between disease genes. We have defined 110 disease-gene

families comprising genetically heterogeneous disorders,

cancer syndromes, and complex (polygenic) diseases, and

we have constructed an interaction network based on a

total of 258,314 experimentally verified or predicted

protein-protein interactions. We demonstrate that random

walk and the related diffusion-kernel method—both of

which capture global relationships within an interaction

network—are greatly superior to local distance measures

within the interaction network and also outperform other

previously published methods. We have made our algo-

rithm freely available on the web, and we also provide pre-

dictions for 287 loci from 80 of the disease-gene families

described in this work.

Material and Methods

Disease-Gene Families
A total of 110 disease-gene families were defined, on the basis of

entries in the Online Mendelian Inheritance in Man (OMIM) data-

base,1 for genetically heterogeneous disorders in which mutations

in distinct genes are associated with similar or even indistinguish-

able phenotypes; cancer syndromes comprising genes associated

with hereditary cancer, increased risk, or somatic mutation in a

given cancer type; and complex (polygenic) disorders that

are known to be influenced by variation in multiple genes. Addi-

tionally, we used domain knowledge and literature or database

searches to select all genes clearly associated with the disorder at

hand. The 110 families contained a total of 783 genes with 665 dis-

tinct genes (Some genes were members of more than one disease

family), whereby the largest family contained 41 genes and the

smallest only three genes. On average, each family contained

seven genes. A complete listing of the disease-gene families with
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links to the corresponding entries in the OMIM database is given

as Table S1, available online.

Protein-Protein Interaction Data
The protein-protein interaction (PPI) network is represented by an

undirected graph with nodes representing the genes and edges rep-

resenting the mapped interactions of the proteins encoded by the

genes. To construct the network, five protein-protein interaction

datasets from human, Mus musculus, Drosophila melanogaster, Cae-

norhabditis elegans, and Saccharomyces cerevisiae were downloaded

from Entrez Gene19 on the 1st of July 2007. These datasets com-

prise interactions extracted from HPRD,20 BIND,21 and BioGrid22.

Additional interactions were extracted from IntACT,23 and DIP.24

Protein interactions were mapped to the genes coding for the pro-

teins, and redundant interactions stemming from multiple data

sources were removed. Interactions from the four nonhuman spe-

cies were mapped to homologous human genes identified by In-

paranoid25 analysis with a threshold Inparalog score of 0.8. If

both interaction partners could be mapped to human proteins,

the interaction was used.

We also used data from STRING,26 which is a comprehensive

dataset containing functional links between proteins on the basis

of both experimental evidence for protein-protein interactions as

well as interactions predicted by comparative genomics and text

mining. STRING uses a scoring system that is intended to reflect

the evidence of predicted interactions. For the present study, we

included interactions with a score of at least 0.4, which corre-

sponds to a medium-confidence network27 (Table 1).

Disease-Gene Prediction
The general idea of the approach is depicted in Figure 1. The details

of how the ranks were obtained are given below.

Random Walk
The random walk on graphs28 is defined as an iterative walker’s

transition from its current node to a randomly selected neighbor

starting at a given source node, s. Here, we used a variant of the

random walk in which we additionally allow the restart of the

walk in every time step at node s with probability r. Formally,

the random walk with restart is defined as:

ptþ1 ¼ ð1� rÞWpt þ rp0

where W is the column-normalized adjacency matrix of the graph

and pt is a vector in which the i-th element holds the probability

of being at node i at time step t.

In our application, the initial probability vector p0 was con-

structed such that equal probabilities were assigned to the nodes

representing members of the disease, with the sum of the probabil-

ities equal to 1. This is equivalent to letting the random walker

begin from each of the known disease genes with equal probabil-

ity. Candidate genes were ranked according to the values in the

steady-state probability vector pN. This was obtained at query

time by performing the iteration until the change between pt

and ptþ1 (measured by the L1 norm) fell below 10�6.

Diffusion Kernel
The diffusion kernel K of a graph G is defined as K ¼ e�bL, where,

intuitively, b controls the magnitude of the diffusion. The matrix

L is the Laplacian of the graph, defined as D � A, where A is the

adjacency matrix of the interaction graph and D is a diagonal ma-

trix containing the nodes’ degrees.29 With the use of K, the rank
950 The American Journal of Human Genetics 82, 949–958, April 20
for each candidate gene j was assigned in accordance with its score

defined as

scoreðjÞ ¼
X

i˛disease gene family

Kij

For a sufficient small b the diffusion kernel can be seen as a lazy

random walk consisting of transitions to one of each of the current

node’s neighbors with probability of b, whereby the walker re-

mains at the current node i with a probability of 1 � dib (with di

being the degree of node i). The column vector j of the matrix K

then represents the steady-state probability vector of the random

walk when starting at node j.

Other Methods
For comparison with previously published methods, we have im-

plemented screens of candidate genes in a linkage interval for di-

rect interactions (DI) with other known disease-family proteins,17

whereby genes are predicted as potential disease genes if they have

a direct interaction to known disease genes. We implemented

a ranking of candidate genes according to the single shortest

path (SP) to any known disease protein in the family (comparable

to the CPS method in 18).

Furthermore, we ranked the genes in our test set with PROS-

PECTR, which uses a variety of sequence-based features, such as

gene length, to train an alternating decision tree to rank genes

in the order of likelihood of involvement in disease.13 Addition-

ally, the internet implementation of ENDEAVOUR10 was used to

test the genes listed in Table 2.

Performance Measurement
For each disease gene we defined the artificial linkage interval to

be the set of genes containing the first 100 genes located nearest

to the disease gene according to their genomic distance on the

same chromosome. In order to measure the performance of the

whole optimization and training procedure, leave-one-out cross-

validation was used for each disease-gene family. If a ranking

method gives the actual disease gene the highest ranking and it

is sequenced first, there is an enrichment of 50-fold. In general,

the formula is Enrichment¼ 50/(rank) for an interval of 100 genes.

For the present analysis, disease genes for which no interaction

Table 1. Networks Tested in this Work

Network

Number of

Interactors

Number of

Interactions

Human 9169 35,910

Mapped:

Worm 684 (146) 831 (768)

Mouse 1412 (78) 1972 (853)

Fruitfly 2176 (590) 4930 (4,613)

Yeast 1557 (441) 33,396 (32,855)

Total Human and Mapped 10,231 74,885

STRING 12,594 209,089

All Data Sources 13,726 258,314

All Data Sources Excluding

Text-Mining Data

11,673 133,612

‘‘Mapped’’ indicates protein-protein interaction data mapped to orthologous

human proteins. The number of new interactors/interactions that were

added to the interaction network by mapping is shown in parentheses.

‘‘All Data Sources’’ denotes the STRING data, human, and mapped interac-

tions.
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Figure 1. Disease-Gene Prioritization
(A) All candidate genes contained in the linkage interval are mapped to the interaction network, as are all previously known disease genes
of the family in question. Our method then assigns a score to each of the candidate genes, with investigation of the relative location of
the candidate to all of the known ‘‘disease genes’’ by the use of global network-distance measures. The genes in the linkage interval are
ranked according to the score in order to define a priority list of candidates for further biological investigation.
(B–D) Each of the three subnetworks displays a different configuration consisting of the same number of nodes. The global distance be-
tween a hypothetical disease gene (x) and a candidate gene (y) is different in each case. In (B), proteins x and y are connected via a hub
node with many other connections, so that the global similarity (sxy) is less than in (C), where x and y are connected by a protein with
fewer connections than those of the hub. On the other hand, nodes that are connected by multiple paths (D) receive a higher similarity
than do nodes connected by only one path. Note that the shortest path between x and y is identical in each case (B–D), so that distance
measures relying on such local information cannot differentiate between these three types of connection. In particular, the approach
taking only direct interactions with gene x into account would identify gene y as a candidate in none of the three cases.
data were available were given a rank of 100 (and therefore an

enrichment score of 0.5). No correction was made for intervals

within which some proteins had no interaction data. If a particular

method assigns an identical score to more than one gene, we as-

sume the worst case, in which the true disease gene is the last to

be sequenced from the set of equally ranked genes.

Another measure of performance of the algorithm is the

receiver-operating characteristic (ROC) analysis, which plots the

true-positive rate (TPR) versus the false-positive rate (FPR) subject

to the threshold separating the prediction classes. The TPR/FPR

is the rate of correctly/incorrectly classified samples of all samples

classified to class þ1. For evaluating rankings of disease-gene pre-

dictions, ROC values can be interpreted as a plot of the frequency

of the disease genes above the threshold versus the frequency of

disease genes below the threshold, where the threshold is a specific

position in the ranking.10 In order to compare different curves ob-

tained by ROC analysis, we calculate the area under the ROC curve

(AUROC) for each curve.

Results

In this work, we constructed an interaction network based

on a total of 35,910 interactions between human proteins
The
as well as 38,975 mapped interactions from four other spe-

cies. Additionally predicted protein interactions from the

STRING database26 were used (Table 1). We adapted a global

distance measure based on random walk with restart

(RWR) to define similarity between genes within this inter-

action network and to rank candidates on the basis of this

similarity to known diseases genes. Intuitively, the RWR

algorithm calculates the similarity between two genes, i

and j, on the basis of the likelihood that a random walk

through the interaction network starting at gene i will

finish at gene j, whereby all possible paths between the

two genes are taken into account. In our implementation,

we let the random walk start with equal probability from

each of the known disease-gene family members in order

to search for an additional family member in the linkage

interval (Figure 1). For comparison, we also implemented

a similar global search algorithm based on the diffusion

kernel (DK), which conceptually performs a different

type of random walk calculated by matrix exponentiation

(see Material and Methods for mathematical details). In

order to compare the performance of global and local net-

work search algorithms, we implemented two previous
American Journal of Human Genetics 82, 949–958, April 2008 951



methods based on searching for disease genes among

direct-interaction partners of candidate genes and search-

ing for the single shortest path to a known disease gene,

and we also utilized PROSPECTR, a previously described

sequence-based ranking system.13 We tested our method

on 86 genetically heterogeneous disorders in which muta-

tions in distinct genes are associated with similar or even

indistinguishable phenotypes; 12 cancer syndromes com-

prising genes associated with hereditary cancer, increased

risk, or somatic mutation in a given cancer type; and 12

complex (polygenic) disorders that are known to be influ-

enced by variation in multiple genes. For every such fam-

ily, we then performed leave-one-out cross-validation (see

Material and Methods).

Using the network containing all interactions (including

text-mining data) and the RWR technique, we ranked

all genes of 43 disease-gene families first (50-fold enrich-

ment). For instance, all genes of Hirschsprung disease

(six genes), Waardenburg syndrome (six genes), adrenoleu-

kodystrophy (five genes), and limb-girdle muscular dystro-

phy (14 genes) families were ranked first. On average, we

achieved an enrichment score of 44-fold for all 783 disease

genes using all data sources including the text-mining

component of STRING. Similar but slightly inferior results

were obtained for the other global search method based on

the DK. Leaving out text mining data, the RWR achieved

a mean enrichment of 27-fold for all 110 disease families.

The best results were obtained for families of heteroge-

neous monogenic diseases. However, there was an espe-

cially clear advantage for the RWR and DK methods

Table 2. Performance of Five Candidate-Gene-Prioritization
Methods on Seven Recently Identified Monogenic Disease
Genes

Family Gene

Rankings

Random

Walk ENDEAVOUR SP DI SQ

Nephronophthisis GLIS237 100 43 100 100 3*

ARVD JUP38 1* 1* 1* 2 67

RP TOPORS39 23 69 20* 100 56

RP NR2E340 2 2 18 100 1*

Noonan Syndrome RAF141 1* 3 4 4 42

Brachydactyly NOG42 1* 5 1* 1* 34

CMT4H FGD443 13 2* 27 100 9

Mean Enrichment 25.9* 18.4 17.2 12.8 10.9

Results of random walk, two local network algorithms, ENDEAVOUR,10 and

the sequence analysis program PROSPECTR12 for the prediction of recently

published genes causing monogenic diseases within artificial linkage inter-

vals containing 100 genes.

‘‘SP’’ denotes ranking according to shortest path.

‘‘DI’’ denotes ranking according to direct interaction with a known disease

protein.

‘‘SQ’’ denotes ranking by sequence analysis with PROSPECTR.

‘‘ARVD’’ denotes arrhythmogenic right ventricular dysplasia.

‘‘RP’’ denotes retinitis pigmentosa.

‘‘CMT4H’’ denotes Charcot-Marie-Tooth type 4H.

* indicates best performance.
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for polygenic disorders and cancer families compared to

the other methods, although the overall performance of

all methods was somewhat less than with the monogenic

disorders (Figure 2A).

The above comparison (Figure 2A) was performed by as-

sumption of the worst case for genes with equal scores, i.e.,

that the true disease gene is sequenced last among the set

of equally ranked genes. In the complete network (without

text-mining data), genes have an average of 22.9 direct

neighbors. There is a mean path length of 3.7 between ran-

dom pairs of genes. Therefore, there are a lot of direct inter-

actions, and nodes are rarely far apart in the interactome.

One consequence of this for methods such as DI and SP

is that it is not very unlikely to observe interactions that

are unrelated to the disease gene family. In 61% of the cases

in which the DI method correctly identified the true dis-

ease gene, it additionally identified other unrelated genes

with a direct interaction to a known disease gene. On the

other hand, in only 1.4% of the cases in which the true dis-

ease gene was ranked in first place by the RWR method was

another, unrelated gene also given the same score. There-

fore, the RWR method is better able to discriminate among

genes within a dense network of interactions. However,

even if all genes with equal scores are assigned the mean

rank, our method clearly outperforms the methods based

on local distance measures (Figure 2B).

We additionally used ROC analysis to compare the vari-

ous methods shown in Figure 2A, confirming the perfor-

mance advantage of RWR and DK analysis compared to

the local interaction screens (DI, SP) and a sequence-based

analysis (Figure 3A).

We then used ROC analysis to compare the performance

of RWR using interaction networks constructed from

several different data sources. Because the different data

sources cover different numbers of genes, we included

only those genes for which interaction data was available

in the ROC analysis (768 of 783 genes for all data sources,

720 of 783 genes for all data sources except text mining,

748 of 783 genes for the STRING network, 669 of 783 genes

for the human and mapped data, and 664 of 783 genes for

the human data).

Present estimates suggest that only about 10% of all hu-

man protein-protein interactions have been described.30

The choice of data source to use for proteome analyses

essentially amounts to a choice between coverage and ac-

curacy. Protein-protein interactions are often evolution-

arily conserved,31 suggesting the mapping of interactions

between orthologous proteins in other organisms to the

human interactome. Additionally, text mining has been

used as one of the components of STRING to predict pro-

tein-protein interactions.27 Although these computational

techniques increase the coverage of proteins and interac-

tions, they presumably come at the cost of reducing the

overall accuracy of the data by introducing false-positive

interactions. Mapping interactions from four other species

increased the number of genes included in the human PPI

network by over 1000 additional genes (cf. Table 1). The
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Figure 2. Cross-Validation Results
Enrichment analyses for the all-interactions network without STRING text-mining data are shown. Genes within an artificial linkage in-
terval containing 100 genes were ranked according to the methods indicated. The mean enrichment reflects the position of the true dis-
ease gene in the prioritized list and is thereby related to the amount of time saved by the sequencing of candidate genes in the order
calculated by the respective algorithm (see Material and Methods). Two different methods for evaluating genes with equal scores were
evaluated.
(A) If multiple genes receive the same score, the worst case is assumed whereby the true disease gene is the last to be sequenced.
(B) If multiple genes receive the same score, each gene is given the mean rank of all tied genes. The complete list of results for each
disease-gene family is available in Table S2.
performance of this mapped network was only slightly

inferior to the network with only human data used, but

given the higher coverage it could be preferable for search-

ing for novel disease genes (Figure 3B). The network with

only medium-confidence STRING data used showed the

best performance of all networks, but fewer genes are

covered in this network than in the complete network

(cf. Table 1).

The highest area under the ROC curve (AUROC) was

98% with text mining and 91% without (Figure 3B). The

improved performance of the network including literature

data confirms previous observations10 that testing gene-

prioritization methods on known disease genes might

introduce a bias because a given gene is likely to be inten-

sively studied in the years following its identification as a

human disease gene. This ‘‘previous-knowledge bias’’

means that methods relying on text mining or targeted

experimental studies on individual genes may perform bet-

ter on historical training data (such as the 110 disease-gene

families described above) than in a prospective setting in

which novel disease genes are sought.

In order to simulate the real-life search for an unknown

novel disease gene, we therefore chose seven disease genes

that were discovered in 2007 and belong to some of the

families investigated in this work. The identification of
The
the disease associations of these genes was published sub-

sequent to the creation date of the STRING database we

used, so that we expect minimal publication bias. We

tested these seven genes as above and also tested the per-

formance of ENDEAVOR,10 which has outperformed all

other previously published methods. RWR achieved a

mean enrichment of 26-fold, which was superior to the

results of all other methods (Table 2).

Figures 4 and 5 display the interaction networks associ-

ated with two disease-gene families for which the RWR

ranked each disease gene (red) in first place. For compari-

son, unrelated genes that mistakenly receive the highest

rank by the SP method are shown in yellow. For the pro-

tein-interaction network associated with bare lymphocyte

syndrome type 1 (Figure 4), it is apparent that the disease

genes are connected to one another by multiple paths,

comparable to Figure 1D, whereas the unrelated genes

are connected to the true disease genes by single paths

only. As noted above, current databases of human protein

interactions are far from complete. This is clearly problem-

atic for predictions based upon direct interactions with dis-

ease genes, because a lack of direct interactions to disease

genes will automatically result in a false-negative predic-

tion. On the other hand, our method appears to be more

tolerant of incomplete data. For instance, the disease-gene
American Journal of Human Genetics 82, 949–958, April 2008 953



Figure 3. Cross-Validation Results
Rank ROC curves were generated for the 110 disease-gene families described in this work. The methods used to calculate the individual
ROC curves are indicated in the figure. Intuitively, the area under the ROC curve (AUROC) reflects the false-positive rate needed to achieve
various levels of sensitivity, with a perfect classifier having an AUROC of 100% and a random classifier having an AUROC of 50%. For
comparison, we excluded disease genes with no interaction data, which were 15 genes in the all-data-sources network, 63 genes in
the same network without text-mining data, 35 genes in the STRING network, 114 with the human and mapped data, and 139 in the
human network.
(A) Comparison of different methods for the all-interactions network without STRING text-mining data. The curve labeled ‘‘random order’’
displays the results obtained by the sequencing of genes within the linkage interval at random, i.e., without use of any prioritization
method.
(B) Comparison of different data sources with RWR analysis.
family for Stickler syndrome comprises COL2A1, COL9A1,

COLA11, and COL11A2. Collagen XI is a heterotrimeric

molecule consisting of alpha 1, alpha 2, and alpha 3 colla-

gen chains; in cartilage, it assembles with collagens II and

IX to produce an extensive network of thin, heterotypic

collagen fibrils.32 However, these interactions are not cur-

rently listed in the protein-interaction databases used for

our study. Nonetheless, the RWR method made the correct

predictions on the basis of a dense network of other inter-

acting proteins between the disease genes (again compara-

ble to Figure 1D). On the other hand, the unrelated genes

that mistakenly receive the highest rank by the SP method

themselves have numerous other interaction partners, so

that a single path to a single true disease gene is not

weighted highly by the RWR method (Figure 5).

Discussion

Several approaches have been published for the prioritiza-

tion of candidate disease genes, which included functional

as well as sequence-based methods. However, the emerging

amounts of protein-protein interaction data have only
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sparsely been used for this problem, by investigation of

either the direct interactions to other disease genes10,17,33

or the shortest-path distance to known disease genes.18

In this work, we have presented a novel method for

candidate-gene prioritization based on the random walk

method, which we use to calculate a score reflecting the

global similarity of candidate genes to known members

of a disease-gene family (Figure 1).

There are a number of issues to consider when compar-

ing the results of different methods for computational

disease-gene prediction or prioritization. Given the cost

and effort involved in characterizing novel disease genes,

prospective comparisons on large numbers of disease loci

have not been performed. Therefore, most groups have

measured the performance of their algorithms by using

collections of known disease genes. That is, a disease-

gene family is defined, and the method is tested on each

of the members of the family in turn by use of the remain-

ing members of the family as positive examples. In this

context, we feel it is important to create a realistic test

scenario. We have defined artificial linkage intervals

containing 100 genes around each of the disease genes

being tested in order to simulate the situation facing
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Figure 4. Bare Lymphocyte Syndrome Type 1 Protein-Interaction Network
The protein-interaction network associated with bare lymphocyte syndrome type 1, which comprises the genes TAP1, TAP2, and TAPBP.
Each of these genes is shown in red. The DI and SP methods additionally identified the unrelated genes PSMB8 and PSMB9 (shown in
yellow) as potential disease genes because they each have an interaction with one of the true disease genes. The RWR method ranks
the true disease genes higher because each true disease gene has interactions with two other family members and because there is a dense
net of proteins that connect the disease genes via paths with two interactions. All proteins connected to the correct or incorrect can-
didates by a single interaction are additionally displayed. The graphic was generated with Cytoscape.44
positional-cloning projects. It is less appropriate to use

some number of genes chosen at random, as was done to

test some other methods,10 because of the tendency of sim-

ilar genes to cluster in chromosomal neighborhoods. For

instance, genes in the same metabolic pathway show sta-

tistically significant genomic clustering as compared to

randomly chosen genes.34 Additionally, we found that pro-

teins coded by genes in the contiguous intervals around

disease genes are located in greater proximity to the corre-

sponding disease-gene family members in the PPI network

than are proteins coded by randomly chosen genes; com-

parison of mean shortest-path distance from genes other

than the disease gene within the 100-gene artificial inter-

val with the corresponding mean distance among 100 ran-

domly chosen genes showed a small but highly significant

difference: 3.46 for the ’’interval genes’’ and 3.58 for the

randomly chosen genes, corresponding to a p value of

2.2 3 10�16 (data not shown).

Another important issue lies in the definition of the

disease-gene families. In this work, we have defined 110

disease-gene families by using both the OMIM database1

and domain knowledge (D.H., P.N.R.) (see Table S1). We

claim that this is the largest publicly available list of

disease-gene families available for the testing of gene-prior-

itization methods. Also important is the range of disease-

gene families and of genes for which a given method is ap-

plicable. In general, methods based on sequence analysis13

have no restrictions. Methods based on functional annota-

tion5–12 have no restrictions but will presumably function

poorly for novel disease genes for which little or no func-
The
tional annotations are available. Especially as more pro-

tein-protein interaction data becomes available, we expect

that methods using this type of data will become ever more

accurate in their prediction of novel disease genes. Some of

these methods are limited to genes having direct interac-

tions with other known disease genes.17,33 Our method

can only be used for genes for which protein-protein inter-

actions are known or predicted, but it does not require

direct interactions. Thus, with our method, no prediction

was possible for 15 of the 783 genes tested. Many dis-

ease-gene families as currently defined contain but two

or three members (see Table S1). Our method was tested

with families as small as three members, meaning that

two genes at a time were used as positive examples. Other

published methods have been tested with the use of larger

families (for instance, ENDEAVOUR10 was tested with fam-

ilies of eight or more genes), so it is unclear how these

methods will perform for smaller disease-gene families.

Therefore, we claim that we have used a realistic and bi-

ologically relevant testing strategy to measure the perfor-

mance of our methods. We have shown that the two global

distance measurements (RWR, DK) clearly outperform two

local network-search methods (DI, SP) and the sequence-

based method PROSPECTR.13 Additionally, we used a panel

of recently identified monogenic disease genes to compare

RWR with both the local network search methods and

PROSPECTR, as well as with ENDEAVOUR.10 We expect

the influence of publication of functional data concerning

these new disease genes to be minimal, because their dis-

covery was published subsequent to the version of the
American Journal of Human Genetics 82, 949–958, April 2008 955



Figure 5. Stickler Syndrome Protein-Interaction Network
The protein-interaction network associated with Stickler syndrome comprises the genes COL2A1, COL9A1, COL11A1, and COL11A2. There is
no direct path between any pair of disease genes. Therefore, the DI method will not make any correct prediction. A number of false pre-
dictions of the SP method are shown in yellow. Most of these genes have a large number of direct interactions with other proteins, so that
the weight of any single interaction is small in the RWR and DK methods. Each of them has a single path of length 2 with one of the true
disease genes. In contrast, the true disease genes each have multiple paths of length 2 with other disease genes and therefore receive
a correspondly high score from the RWR and DK methods. For instance, the genes COL11A1, COL11A2, and COL2A1 are connected to one
another by 14 other genes. The graphic was generated as in Figure 4.
STRING database we used. Although no single method was

superior for all of the genes tested, our RWR method out-

performed all other methods on average (Table 2).

It has recently become clear that networks pervade all

aspects of human health and that a network approach to

the analysis of cellular functions affected by genes and

gene products, rather than just a list of ’’disease genes,’’

will be necessary for the understanding of disease mecha-

nisms35 and that proteins mutated in phenotypically sim-

ilar diseases might form highly interlinked subnetworks

within the larger protein interaction network.36 In this

work, we have shown that network algorithms that mea-
956 The American Journal of Human Genetics 82, 949–958, April 20
sure not only direct and shortest-path interactions but

also take the global structure of the interactome into

account have a clear performance advantage in the priori-

tization of candidate disease genes. We suggest that this

supports the assumption that phenotypically similar dis-

eases are associated with disturbances of subnetworks

within the protein interactome and that exploration of

global network structures with appropriate graph-theoretic

algorithms will become an important resource for under-

standing of the biology of disease.

We have developed GeneWanderer, a freely available im-

plementation of all four network algorithms. Scientists
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involved in positional-cloning projects can search for

novel genes related to one of the 110 disease-gene families

described here or can provide their own disease-gene fam-

ily. They can then use our algorithm to rank genes in a link-

age interval in order to prioritize candidate genes for

sequencing. Many of the 110 disease-gene families ana-

lyzed in this work also contain loci with currently uniden-

tified genes. On the GeneWanderer homepage, we provide

predictions for 287 such loci from 80 disease-gene families

extracted from the Morbid Map of OMIM.1

Supplemental Data

Supplemental Data include two tables and can be found online at

http://www.ajhg.org/.
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